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Predictive models can inform decision-making



Medical data present modelling challenges
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Develop predictive models for medical decision-making and addressing 
socio-medical disparities present in medical data. 

Data Model
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Data ModelPopulation Deployment

Develop predictive models for medical decision-making and addressing 
socio-medical disparities present in medical data. 
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Time

Admission

Observations are the result of the interaction between 
patients and the healthcare system.
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Talk structure
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How to inform 
imputation choice?

How to model 
unobserved outcomes?

ModelPopulation Data

What is algorithmic 
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What is algorithmic fairness?
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This talk focuses on group fairness, measured through equal 
performance across groups, i.e. a pipeline is fairer than another 

with regard to a group if its performance gap is the smallest.

?



Imputation Strategies Under 
Clinical Presence: 
Impact on Algorithmic 
Fairness

V. Jeanselme, M. De-Arteaga, Z. Zhang, J. Barrett and B. Tom



Canonical pipeline

Data ModelImputation
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Development of a machine learning pipeline

Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review by Nijman et al., 2022

Data ModelImputation

65% of ML for healthcare papers have 
missingness, but <10% report handling
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Fairness literature focuses on modelling
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Data Model
Measure

of fairness 

The fairness literature studies how to detect and mitigate 
biases present in the data. Current focus has been on 

modelling choices’ consequences on algorithmic fairness.

Imputation



Missingness patterns reflect disparities

Data Model
Measure

of fairness 
Imputation

This paper focuses on biases in what is absent 
from the data
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Imputation impacts algorithmic fairness

Data Model
Measure

of fairness 
Imputation

How do current imputation practices 
impact algorithmic fairness ?
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Proposed path forward

Data ModelImputation

We introduce a path forward to better inform imputation 
choice when concerned with algorithmic fairness
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Measure
of fairness 



Group-specific
Missingness Patterns



Confirmation bias 
Information is only collected when a condition 
is expected.

Limited access to quality care 
Resulting in more missing data for some 
patients, e.g. as a result of less follow-up visits.

(Mis)-informed collection 
Concentration of missing data for patients who do not 
present “standard” symptoms that trigger questions or 
laboratory tests.

Missingness can reflect disparities

26



Confirmation bias 
Information is only collected when a condition 
is expected.

Limited access to quality care 
Resulting in more missing data for some 
patients, e.g. as a result of less follow-up visits.

(Mis)-informed collection 
Concentration of missing data for patients who do not 
present “standard” symptoms that trigger questions or 
laboratory tests.

Missingness can reflect disparities

27



Confirmation bias 
Information is only collected when a condition 
is expected.

Limited access to quality care 
Resulting in more missing data for some 
patients, e.g. as a result of less follow-up visits.

(Mis)-informed collection 
Concentration of missing data for patients who do not 
present “standard” symptoms that trigger questions or 
laboratory tests.

Missingness can reflect disparities

28



Missingness can reflect disparities
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Confirmation bias 
Information is only collected when a condition 
is expected.

Limited access to quality care 
Resulting in more missing data for some 
patients, e.g. as a result of less follow-up visits.

(Mis)-informed collection 
Concentration of missing data for patients who do not 
present “standard” symptoms that trigger questions or 
laboratory tests.

Traditional missingness dichotomisation does not capture 
the group-specific nature of medical missingness
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Empirical Comparison of 
Imputation Strategies
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Pipeline

➔ Single mean imputation (Mean) - Missing data are replaced by the 
population mean.

➔ Hot Deck - Missing data replaced with closest patients’ covariates.

➔ Multiple Imputation using Chained Equation (MICE) - Missing 
covariates are iteratively drawn from a regression model built over 
all other available covariates with median initialisation.

➔ MICE Missing - Missingness indicators are concatenated to the 

input data to leverage informative missingness.

40



Pipeline

➔ Single mean imputation (Mean) - Missing data are replaced by the 
population mean.

➔ Hot Deck - Missing data replaced with closest patients’ covariates.

➔ Multiple Imputation using Chained Equation (MICE) - Missing 
covariates are iteratively drawn from a regression model built over 
all other available covariates with median initialisation.

➔ MICE Missing - Missingness indicators are concatenated to the 

input data to leverage informative missingness.

➔ Group Alternatives - Group membership is added to render the 

MAR assumption more plausible.
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Reconstruction error
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Reconstruction error
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Reconstruction error
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Reconstruction error
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Group-imputation can lead to worse performance
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No imputation is best over all settings
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Pipeline

➔ Single mean imputation (Mean) - Missing data are replaced by the 
population mean.

➔ Hot Deck - Missing data replaced with closest patients’ covariates.

➔ Multiple Imputation using Chained Equation (MICE) - Missing 
covariates are iteratively drawn from a regression model built over 
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Logistic 
Regression



Downstream performance
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Current practices are flawed
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Counter arguments

1. Impossible to measure reconstruction 
error and disconnected from 
downstream algorithmic fairness
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1. Aim to minimise reconstruction error
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missingness patterns

3. Group-specific imputation can increase 
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55

Practitioners in healthcare must change their imputation practices



Informing Imputation 
Choice in a Case-Study



Building a predictive model on MIMIC III

MIMIC-III, a freely accessible critical care database by A Johnson & al. 57

Observation Period

Time

Admission

Will the patient survive 7 days ?

24 hours

67 
laboratory 

tests

37, 917 
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Patterns of observation

MIMIC-III, a freely accessible critical care database by A Johnson & al. 59

Observation Period

Time

Admission

Will the patient survive 7 days ?

24 hours

67 
laboratory 

tests

37, 917 

Orders

Alive 5.68

Dead 7.57

Female 5.54

Male 6.03

Orders

Black 5.24

Other 5.86

Public 5.67

Private 6.11
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60

1. Identify imputation strategies

2. Measure impact on downstream 
performances and algorithmic fairness

3. Select imputation considering trade-off 
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1. Identify imputation strategies

2. Measure impact on downstream 
performances and algorithmic fairness

3. Select imputation considering trade-off 

4. Report



Imputation Cards
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Clinical 
Missingness

ModelImputation

Jeanselme, V., De-Arteaga, M., Zhang, Z., Barrett, J., & Tom, B. (2022). Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness. 
In Machine Learning for Health (pp. 12-34). PMLR. -  Reject and resubmit at Management Science (2nd round)

Conclusion

1. Missingness can reflect disparities

2. Current imputation practices can amplify these disparities

3. The introduced framework mitigates risks resulting from 
imputation



Ignoring Competing Risks: 
Impact on Algorithmic 
Fairness

V. Jeanselme, C. Yoon, J. Barrett and B. Tom



Clinical presence concerns more than covariates
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Outcomes are not always observed
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Outcomes are not always observed

Censored

Outcome of interest
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Competing risks preclude the outcome of interest
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Censored
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Probability of 
observing

Time

Not accounting for 
competing risks

Considering competing risks as censoring

Competing risks and the clinical community: irrelevance or ignorance? by Koller et al., 2012 73

50% of studies do not account for competing risks

Competing risks preclude 
outcome of interest

Censored

Outcome of interest

(   )
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Competing risks preclude 
outcome of interest

Censored

Outcome of interest
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Not accounting for 
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Accounting for 
competing risks

Different groups may not present the same risk
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Competing risks preclude 
outcome of interest

Censored

Outcome of interest



Probability of 
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Not accounting for 
competing risks

Different groups are impacted differently
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Competing risks preclude 
outcome of interest

Censored

Outcome of interest



Quantifying the error 
associated with 
current practice



Modelling competing risks

79

X

T
1

T
2



Modelling competing risks

80

X

T
1

T
2

T
R…



Modelling competing risks

81

X

R 

T
r



Modelling competing risks

82

C

X

R 

T
r



Modelling competing risks

83

C

X

R 

T
r

T, D



Modelling competing risks

84

C

X

R 

T
r

T, D



Quantifying the error between the two
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Relative cumulative incidence discrepancy
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Relative cumulative incidence discrepancy
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Probability of 
observing

Time

Not accounting for 
competing risks

Accounting for 
competing risks



Inter-group discrepancy
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Does modelling competing risks as censoring have algorithmic 
fairness consequences ?



Different groups are impacted differently
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Modelling competing risks

One is interested in estimating the cumulative incidence function:
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Challenges in modelling competing risks

One is interested in estimating the cumulative incidence function:

Often by maximising the associated likelihood of observed outcomes:
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Observed Events Censored



Traditional approximations
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Proposed approach
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Embedding covariates

Input

Monotonic Neural Network

Multi Layer Perceptron

E
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Modelling conditional outcome
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What is a monotonic neural network ?

Monotonic networks by J. Sill, 1997
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What is a monotonic neural network ?

Monotonic Multi-layer Perceptron Networks as Universal Approximators by Lang, 2005
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Output

Positively weighted neural networks are universal monotonic approximators.



Neural Fine-Gray
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Efficient and exact computation of all quantities
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Impact on Cardiovascular 
Care Management



Experimental settings

Censored: 56.15%

Cardiovascular disease diagnosis: 26.09% 

Death from other causes : 17.75% 

4,434 
patients

18 covariates 
measured at study entry

Probability of 
observing CVD 
given baseline 

covariates

Time
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Ignoring competing risks
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Performances decrease with longer horizons
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Modelling competing risks improves performance
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Modelling competing risks reduces gap
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Groups benefit differently
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Patients the most at risk for the competing risks benefit the most.



Impact on medical practice

110

Yes

No

Not accounting for 
competing risks

Accounting 
for competing risks

16% of 60+ patients 
would avoid treatment

10%

10 years

Cholesterol 
lowering drug

Wait

Is the patient’s risk more than 10% in 
the 10 next years ?



Conclusions
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Jeanselme, V., Yoon, C. H., Tom, B., & Barrett, J. (2023). Neural Fine-Gray: Monotonic neural networks for competing risks. In Conference on Health, Inference, and 
Learning (pp. 379-392). PMLR.

Jeanselme, V.,  Yoon, C. H., Tom, B., & Barrett, J. Improper Modelling of Competing Risks: Impact on Risk Estimation and Algorithmic Fairness

Probability 
of observing

Time

Not accounting for 
competing risks

Accounting for 
competing risks

Competing risks preclude 
outcome of interest

Censored

Outcome of interest

1. Modelling competing risks as censoring results in 
overestimating risks and impacts algorithmic fairness

2. The proposed Neural Fine Gray models competing risks 
exactly and efficiently
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Deploy and measure impact on care and practice
How can we improve medical decisions?

Jambusaria-Pahlajani, A.*, Jeanselme, V.*,  et al. (2024) 
riSCC: A personalized risk model for the development of poor outcomes in cutaneous squamous cell carcinoma
Journal version under review at JAMA Network Open.

Develop predictive models for medical decision-making and 
addressing socio-medical disparities present in medical data. 

How can we improve prediction from data and labels resulting 
from imperfect decisions?
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Deploy and measure impact on care and practice
How can we improve medical decisions?

Develop predictive models for medical decision-making and 
addressing socio-medical disparities present in medical data. 

How can we improve prediction from data and labels resulting 
from imperfect decisions?

1. Develop trials to quantify the benefit of ML
2. Consider all dimensions of medical decisions
3. Human-Centered AI: Consider decisions as part of the pipeline
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