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Medical data can improve care
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How Artificial Intelligence Could

Transform Medicine /- Q_ @
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Predictive models can inform decision-making
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Medical data present modelling challenges
WE{R}AD
When It Comes to Health Care, Al Has a Long Way to Go

Medical information is more complex and less available than the web data that many

algorithms were trained on, so results can be misleading. Q_» 2
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Medical data embed disparities
NIEERE

When It Comes to Health Care, Al Has a Long Way to Go

Medical information is more complex and less available than the web data that many

algorithms were trained on, so results can be misleading. / Q_»
e
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€he New ork Times

AL Could Worsen Health Disparities

In a health system riddled with inequity, we risk making

dangerous biases automated and invisible.
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CONFRONTING RACIAL AND ETHNIC
DISPARITIES IN HEALTH CARE
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Research

Develop predictive models for medical decision-making and addressing
socio-medical disparities present in medical data.

Data Model
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Research

Develop predictive models for medical decision-making and addressing
socio-medical disparities present in medical data.

FoIgE

Population Data Model Deployment

+ UNIVERSITY OF
4% CAMBRIDGE



Research

Carnegie

Mellon

University

Alan Turi
n Turi
Institute i

COLUMBIA
UNIVERSITY

Population Model

Res + 2021

AAAI 2021
CHIL 2022
CHIL 2023
AAAI 2024
Under Review 2024

ML4H 2022

MNSC 2024

Working 2024

©
TEXAS
Dell Med

MAYO
CLINIC
I I
N4

Deployment
ATS 2020 Medical Venues
ISICM 2020 ML Venues

Critical Care 2020
Under Review 2024

Business Venues

NeurIPS 2022

UNIVERSITY OF
CAMBRIDGE



Mitigate Biases

Research

Carnegie
Mellon

University

Identify Biases

Th:la Turi
n Turi
Institute i

COLUMBIA
UNIVERSITY

Population Data Model
Res + 2021 AAAI 2021
CHIL 2022
ML4H 2022 CHIL 2023
AAAI 2024
MNSC 2024

Under Review 2024

Working 2024

Augment Decisions

©
TEXAS
Dell Med

MAYO
CLINIC
I I
N4

Deployment
ATS 2020 Medical Venues
ISICM 2020 ML Venues
Critical Care 2020 Business Venues

Under Review 2024

NeurIPS 2022

UNIVERSITY OF
CAMBRIDGE



Mitigate Biases

Research

Carnegie

Mellon

University

Identify Biases T RanTuring
COLUMBIA
UNIVERSITY
[ ]
w mEE &
AR — :
Population Data Model
Res + 2021 AAAI 2021
CHIL 2022
ML4H 2022 CHIL 2023
AAAI 2024
MNSC 2024

Under Review 2024

Working 2024

Augment Decisions

TEXAS
Dell Med

MAYO
CLINIC

Deployment

Medical Venues
ML Venues
Business Venues

ATS 2020
ISICM 2020
Critical Care 2020
Under Review 2024

NeurIPS 2022

UNIVERSITY OF
CAMBRIDGE



Clinical Presence

Admission

T - :

CAMBRIDGE



Clinical Presence

Admission

" e .

IIIIIIIIIIII
CAMBRIDGE



Clinical Presence

Admission
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Observations are the result of the interaction between
patients and the healthcare system.
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Talk structure

Population Data Model Fairness

What is algorithmic
fairness ?
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Talk structure

Population Data Model Fairness

How to inform

imputation choice? What is algorithmic

fairness ?
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Talk structure

How to model
unobserved outcomes?

Population Data Model Fairness

How to inform

imputation choice? What is algorithmic

fairness ?
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What is algorithmic fairness?

Tt
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This talk focuses on group fairness, measured through equal
performance across groups, i.e. a pipeline is fairer than another
with regard to a group if its performance gap is the smallest.
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Imputation Strategies Under
Clinical Presence:

Impact on Algorithmic
Fairness

V. Jeanselme, M. De-Arteaga, Z. Zhang, J. Barrett and B. Tom
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Development of a machine learning pipeline

— o o o -

65% of ML for healthcare papers have
missingness, but <10% report handling

Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review by Nijman et al., 2022 3%&?’4%‘13‘1%8@



Fairness literature focuses on modelling
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Measure
of fairness
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The fairness literature studies how to detect and mitigate
biases present in the data. Current focus has been on
modelling choices’ consequences on algorithmic fairness.
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Missingness patterns reflect disparities

Measure
of fairness
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This paper focuses on biases in what is absent
from the data

Model
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Imputation impacts algorithmic fairness

Measure
of fairness

How do current imputation practices
impact algorithmic fairness ?
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Proposed path forward

Measure \
of fairness

We introduce a path forward to better inform imputation
choice when concerned with algorithmic fairness
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Group-specific
Missingness Patterns



Missingness can reflect disparities

_____________________________________________________

' Limited access to quality care
. Resulting in more missing data for some
i patients, e.g. as a result of less follow-up visits.
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Missingness can reflect disparities

' (Mis)-informed collection

' Concentration of missing data for patients who do not
. present “standard” symptoms that trigger questions or
i laboratory tests.

_____________________________________________________
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Missingness can reflect disparities

_____________________________________________________

i Confirmation bias
. Information is only collected when a condition
' is expected.
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Missingness can reflect disparities

' (Mis)-informed collection

' Concentration of missing data for patients who do not
. present “standard” symptoms that trigger questions or
' laboratory tests.

_____________________________________________________

Limited access to quality care
Resulting in more missing data for some
patients, e.g. as a result of less follow-up visits.

Confirmation bias
Information is only collected when a condition
is expected.

Traditional missingness dichotomisation does not capture
the group-specific nature of medical missingness
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Current Imputation
Practices



Current imputation practices

1. Aim to minimise reconstruction error L' =E,[||#! — z||3]
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Current imputation practices

1. Aim to minimise reconstruction error

2. Relyon asingle imputation based upon
unrealistic missingness assumptions
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Current imputation practices

1. Aim to minimise reconstruction error

2. Relyon asingle imputation based upon
unrealistic missingness assumptions

3.  When algorithmic fairness, encourage
group-specific imputation

Fairness without imputation: A decision tree approach for Fair prediction with missing values by Jeong et al., 2022 ‘éﬁ%ﬁ?ﬁ?ﬁc‘;’é



Population Mean

Current imputation practices

1. Aim to minimise reconstruction error

2. Relyonasingle imputation based upon
unrealistic missingness assumptions

3.  When algorithmic fairness, encourage
group-specific imputation

Fairness without imputation: A decision tree approach for Fair prediction with missing values by Jeong et al., 2022 ":' ‘éﬁﬁ%‘ﬁ'ﬁé’é



Population Mean

Current imputation practices

1. Aim to minimise reconstruction error

2. Relyonasingle imputation based upon
unrealistic missingness assumptions

3.  When algorithmic fairness, encourage
group-specific imputation

o . . o . e o P . o . 5 UNIVERSITY OF
Fairness without imputation: A decision tree approach for Fair prediction with missing values by Jeong et al,, 2022 ":” CAMBRIDGE



Empirical Comparison of
Imputation Strategies



Simulations

Outcome
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= = = Negative
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Simulations

Outcome
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= = = Negative
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Simulations

Outcome Group Missingness
Positive s Majority Majority
- - = Negative mmm Marginalised 27 Marginalised

N . .
x o : .
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¢\\.‘,/q‘. .. “
X1
(S1) (S2) (S3)
Ground Truth Limited access (Mis)-informed Confirmation
to quality care collection bias
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Pipeline

- Single mean imputation (Mean) - Missing data are replaced by the
population mean.

-> Hot Deck - Missing data replaced with closest patients’ covariates.

- Multiple Imputation using Chained Equation (MICE) - Missing
covariates are iteratively drawn from a regression model built over
all other available covariates with median initialisation.

- MICE Missing - Missingness indicators are concatenated to the
input data to leverage informative missingness.
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Pipeline

- Single mean imputation (Mean) - Missing data are replaced by the
population mean.

-> Hot Deck - Missing data replaced with closest patients’ covariates.

- Multiple Imputation using Chained Equation (MICE) - Missing
covariates are iteratively drawn from a regression model built over
all other available covariates with median initialisation.

- MICE Missing - Missingness indicators are concatenated to the
input data to leverage informative missingness.

- Group Alternatives - Group membership is added to render the
MAR assumption more plausible.
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Limited access
to quality care (S1)
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Reconstruction error

Limited access
to quality care (S1)
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Reconstruction error

Confirmation
bias (S3)

(Mis)-Informed
collection (S2)

Limited access
to quality care (S1)
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No imputation is best over all settings
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bias (S3)
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Pipeline

- Single mean imputation (Mean) - Missing data are replaced by the

population mean.
-> Hot Deck - Missing data replaced with closest patients’ covariates. Q
- Multiple Imputation using Chained Equation (MICE) - Missing
covariates are iteratively drawn from a regression model built over Logistic
Regression

all other available covariates with median initialisation.

- MICE Missing - Missingness indicators are concatenated to the
input data to leverage informative missingness.

- Group Alternatives - Group membership is added to render the
MAR assumption more plausible.
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Downstream performance
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No imputation is best over all settings
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No imputation is best over all settings

Limited access (Mis)-Informed Confirmation
to quality care (S1) collection (S52) bias (S3)
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Current practices are flawed

Current practices Counter arguments

1. Aim to minimise reconstruction error 1. Impossible to measure reconstruction
error and disconnected from

2. Rel ingle imputation based upon . .
€y on a singte imputati P downstream algorithmic fairness

unrealistic missingness assumptions

3.  When algorithmic fFairness, encourage
group-specific imputation
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unrealistic missingness assumptions
2. No best imputation strategies over all

3.  When algorithmic fFairness, encourage .
missingness patterns

group-specific imputation
3. Group-specific imputation can increase
reconstruction error and downstream

gaps

UNIVERSITY OF
CAMBRIDGE



Current practices are flawed

Current practices Counter arguments

1. Aim to minimise reconstruction error 1. Impossible to measure reconstruction
error and disconnected from

2. Rel inglei tation based upon . .
€y on a singte imputati P downstream algorithmic fairness

unrealistic missingness assumptions
2. No best imputation strategies over all

3.  When algorithmic fFairness, encourage .
missingness patterns

group-specific imputation
3. Group-specific imputation can increase
reconstruction error and downstream

gaps

Practitioners in healthcare must change their imputation practices
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Informing Imputation
Choice in a Case-Study



Building a predictive model on MIMIC I
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Orders

Patterns of observation Alve  5.68

Dead 7.57
Admission
ETg |
. : ﬁ : Time
37,917 |n| e
SR A )
laboratory \% : Will the patient survive 7 days ?

tests !
' Observation Period
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Orders Orders

Patterns of observation Alve 568 Black  5.24

Dead 7.57 Other 5.86
Female 5.54 Public 5.67
Admissi
dmission Male  6.03 Private  6.11
FTg .
. : ﬁ : Time
37,917 |n| T
SR A )
laboratory \% : Will the patient survive 7 days ?

tests !
' Observation Period
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Framework

1. ldentify imputation strategies

2. Measure impact on downstream
performances and algorithmic fairness

3. Select imputation considering trade-off
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InfForming imputation choice
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Framework

BLUEPRINT FOR AN Al BILL
OF RIGHTS

1. ldentify imputation strategies

MAKING AUTOMATED SYSTEMS WORK FOR

2. Measure impact on downstream THE AMERICAN PEOPLE
performances and algorithmic fairness e » osTe

3. Select imputation considering trade-off

Algorithmic Transparency
Recording Standard: Getting
ready for adoption at scale
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Framework

1.

Identify imputation strategies

Measure impact on downstream
performances and algorithmic fairness

Select imputation considering trade-off

Report

Factors:
[J Marginalised groups
[J Environment
Missingness process:
[J Known mechanisms
[J Potential influences
Descriptive statistics
Considered pipelines:
[J Imputation strategies
[J Models
Metrics
Quantitative results
Caveats and recommendations
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Short-term survival prediction

Factors: Considered pipelines:
e Marginalised groups: Sex (43.3% female), e Imputation: Mean imputation, Hot Deck,
° ethnicity (Black (7.7%) vs non-Black) MICE, MICE Missing (using a missing-
and insurance (public (66.6%) vs rest). ness indicator as input to the model) and
I I I p U a I O n a r S e Environment: All data from Intensive their group-specific alternatives.
Care Units (ICU) in a teaching hospital e Modelling: Logistic regression with 12
in Boston, Massachusetts, USA. penalty on the imputed data.
Missingness process: Metrics: Use of False Negative Rate at
o Known mechanisms: Standardised proce- 30% (current threshold of prioritisation) to
dures following ICU guidelines. reflect the percentage of patients that would
e Potential influences: Experts’ intuition not be prioritised despite being at risk, both at
and potential biases from limited access the population level and stratified by groups.
to care, historical biases and confirmation Quantitative results: The following fig-
biases. ure describes the performance stratified by
Descriptive statistics: groups. Overall performance ranges from
e Range of missingness rate at the end of 28.4% to 38.0% FNR highlighting a large
24 hours of observation across the differ- impact of imputation on performance.
ent covariates [1.90 - 99.98] with average Groups | Gap Range | Best
60.53%. The following table presents the Sex [-6.42 - 1.87] |-3.73

Ethnicity | [-9.52 - 10.83] | 0.01

results stratified for the different groups. Insurance | [-28.6 - -0.81] | -0.81

e Percentage of patients with more than R ENR perf g
P . ok Ere ange performance gaps (in percent)
50% of tests observed: 85.56%
stratified per group.
Groups |  Marginalised | Majority Caveats and recommendations: Assum-
Sex 60.82 [2.15 - 99.98] | 60.31 [1.70 - 99.99] ing a stable missingness process and popula-
Ethnicity | 61.10 [2.62 - 100] | 60.48 [1.83 - 99.98] tion distribution at deployment, MICE with
Insurance | 60.93 [1.88 - 99.98] | 60.81 [1.93 - 99.99] missingness indicator minimises the number of
Missingness percentage (mean [min - max]) patients missed across and within each group.
stratified per groups.
£ Sex Ethnicity Insurance
2 @ Majority
506 " ® Marginalised
o x Overall
$ 0.5 T Population
N ¢ ] ° Group-Specific
S04 i
{ x
T osp®, mat, 3
E=1) i K [
5" LU I i 1
5 8 v
£10:2 & & o & & o o & & o
S N & IS & & &
“Z & & &~ & & & & & & & & <
h: $ & $ & $ &

Model performance stratified per group and imputation strategies.

Figure 9 Imputation card for short-term prediction in the MIMIC dataset.
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Conclusion

Clinical
Missingness

Imputation Model

H
|
1. Missingness can reflect disparities =
2. Current imputation practices can amplify these disparities u

3. Theintroduced framework mitigates risks resulting from
imputation

Jeanselme, V., De-Arteaga, M., Zhang, Z., Barrett, J.,, & Tom, B. (2022). Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness.
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Ignoring Competing Risks:
Impact on Algorithmic
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Clinical presence concerns more than covariates
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Outcomes are not always observed
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'n' ] [ | Outcome of interest

CAMBRIDGE



Outcomes are not always observed
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Competing risks preclude the outcome of interest
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Considering competing risks as censoring

E E w Probability of
M observing

[ ]
'n' = [ ] Outcome of interest .
w' _ . — = Notaccounting for
. _--" competing risks
”
w = | O w Censored 4
’

. ’

N 4
w 5 > . (x) ______ g Competing risks preclude I

- outcome of interest [

\i)" Time
50% of studies do not account for competing risks
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This practice biases estimates
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This practice biases estimates
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. competing risks
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Different groups may not present the same risk
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'n' = [ ] Outcome of interest .
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Different groups are impacted differently

_H_ w Probability of
ﬁ I ﬁ observing

'n' = [ ] Outcome of interest .
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Quantifying the error
associated with
current practice



Modelling competing risks
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Modelling competing risks

T :=min(C, T1,...,TR)
D := argmin (C, T1,...,TR)

UNIVERSITY OF
4% CAMBRIDGE



Modelling competing risks
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Quantifying the error between the two

FC

r
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Relative cumulative incidence discrepancy

FrNc(t | w) B Frc(t | ZC)

L'(t,x) : = maX(FTNC(t | w),FTC(t | z))




Relative cumulative incidence discrepancy

FYO(t | =) — FC(t | )
max(FNY(t | z), FE(t | x))
=Pds, Ts < T} | z)

=
Probability of g
observing X P (@‘ < w )

L' (t,x):=

w' _ === Notaccounting for
" competing risks
7’ < .
Y 4 Accounting for
/ competing risks
/
Time
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Inter-group discrepancy

Ag i =Eyy[L7(z)] — Egjzg [L ()]

Does modelling competing risks as censoring have algorithmic
fairness consequences?
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Different groups are impacted differently

Aj

— IEat:|g [L ( )] - Exl#g [Lr(x)]
=P(3s, T, < T, | g) —P(3s, Ts, < T | ~g)
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Not accounting for
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Modelling
competing risks



Modelling competing risks

One is interested in estimating the cumulative incidence function:

FC(t|z):=P(T, <t,VsT, <T,| )
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Challenges in modelling competing risks

One is interested in estimating the cumulative incidence function:

FC(t|z):=P(T, <t,VsT, <T,| )

Often by maximising the associated likelihood of observed outcomes:

Z—Zng t‘w +ZlogllectaxZ]

r i, d;=r 7, d;=0

Observed Events Censored
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Traditional approximations

ZZlog t‘w +Zlogllecta:Z]

r i, d;=r 7, d;=0

.
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Proposed approach

ZZlog t‘w +Zlog[12FCta:Z]

r i, d;=r 7, d;=0

UUUUUUUUUUUU
CAMBRIDGE



Embedding covariates

. Multi Layer Perceptron
‘ Monotonic Neural Network
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Modelling conditional outcome
t

. Multi Layer Perceptron
‘ Monotonic Neural Network
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What is a monotonic neural network ?
t

Vd € RT,M(t +d) > M(¢) S .

. Multi Layer Perceptron
‘ Monotonic Neural Network

Monotonic networks by J. Sill, 1997 ':' ‘éﬁﬁ%‘ﬁ?ﬂé’é



What is a monotonic neural network ?
t

. Multi Layer Perceptron
‘ Monotonic Neural Network

Monotonic networks by J. Sill, 1997 ':' ‘éﬁﬁ%‘ﬁ?ﬂé’é



What is a monotonic neural network ?
t

Positively weighted neural networks are universal monotonic approximators.

. Multi Layer Perceptron
‘ Monotonic Neural Network

Monotonic Multi-layer Perceptron Networks as Universal Approximators by Lang, 2005 '=' ‘éﬁ%‘ﬁ‘fﬂé’é



Neural Fine-Gray

t
P (Y <t|\ﬂ-<§s)
Input - -----~B VI o

. Multi Layer Perceptron
. Monotonic Neural Network
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Efficient and exact computation of all quantities
t
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Efficient and exact computation of all quantities
t
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Impact on Cardiovascular
Care Management



Experimental settings

Probability of

18 covariates observing CVD
measured at study entry given baseline
w' covariates

o | Cardiovascular disease diagnosis: 26.09% \{J

B Censored: 56.15%

==je =lje =il¢
=

o ’XD Death from other causes: 17.75%
=
4,434 % \U Time

patients
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Ignoring competing risks
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Brier Score

qo.25
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Non Competing
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Performances decrease with longer horizons

-
Brier Score
(@] o
= N
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Modelling competing risks improves performance

-
Brier Score
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Modelling competing risks reduces gap

0.30 .
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® 40-50
® 50-60
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Groups benefit differently

0.30 ® <40
0.25 + ® 40-50
: B ® 50-60
%0.20 ‘ * ¢ ® 60+
A 5 1% ® i @ ? Non Competing
5 ¢ | Competi
@ ¢ ¢ : ompeting
5010 ¢® |
$e
0.05 é é ;
Qo.25 do.s do.75
Horizons

Patients the most at risk for the competing risks benefit the most.
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Impact on medical practice

Is the patient’s risk more than 10% in

10%

the 10 next years ?

. _ === Notaccounting for
X competing risks
I -

P A Accounting

,’ : for competing risks

/

10 years

16% of 60+ patients
would avoid treatment

Yes (’

No @ Wait

Cholesterol
lowering drug
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Conclusions

1.  Modelling competing risks as censoring results in
overestimating risks and impacts algorithmic Fairness

2. The proposed Neural Fine Gray models competing risks

exactly and efficiently

Not accounting for
competing risks

——— -

Accounting for
competing risks

w' Probability
of observing
————— [ Outcome of interest w 1
...................... o w Censored
& x ________ Competing !’ISkS preclude
- outcome of interest

Time
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Future
Directions



Future directions

Develop predictive models for medical decision-making and
addressing socio-medical disparities present in medical data.
How can we improve prediction from data and labels resulting
from imperfect decisions?
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Deploy and measure impact on care and practice
How can we improve medical decisions?
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Future directions

Develop predictive models for medical decision-making and
addressing socio-medical disparities present in medical data.
How can we improve prediction from data and labels resulting
from imperfect decisions?

T O B

b |

—~

000

Deploy and measure impact on care and practice riSCC
How can we improve medical decisions? A personalized risk

calculator for cutaneous
squamous cell carcinoma

Jambusaria-Pahlajani, A.*, Jeanselme, V.*, et al. (2024)
riSCC: A personalized risk model for the development of poor outcomes in cutaneous squamous cell carcinoma

. . 5 UNIVERSITY OF
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Future directions

Develop predictive models for medical decision-making and
addressing socio-medical disparities present in medical data.
How can we improve prediction from data and labels resulting
from imperfect decisions?

Deploy and measure impact on care and practice
How can we improve medical decisions?

1. Develop trials to quantify the benefit of ML
2.  Consider all dimensions of medical decisions
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Future directions

Develop predictive models for medical decision-making and
addressing socio-medical disparities present in medical data.
How can we improve prediction from data and labels resulting
from imperfect decisions?

Deploy and measure impact on care and practice
How can we improve medical decisions?

1. Develop trials to quantify the benefit of ML
2.  Consider all dimensions of medical decisions

3. Human-Centered Al: Consider decisions as part of the pipeline B UNIVERSITY OF
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