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Time

Admission

The observation process is imprinted by the interaction 
between patients and the healthcare system.
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Risk of Clinical Presence

Clinical Presence presents a risk for 
the generalisability of machine 
learning solutions.
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Jeanselme, V., Martin, G., Peek, N., Sperrin, M., Tom, B., & Barrett, J. (2022). 
Deepjoint: Robust survival modelling under clinical presence shift. 
NeurIPS 2022 Workshop on Learning from Time Series for Health.
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Risk of Clinical Presence

What happens under group-specific patterns ?

Jeanselme, V., De-Arteaga, M., Zhang, Z., Barrett, J., & Tom, B. (2022). 
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness. 
In Machine Learning for Health (pp. 12-34). PMLR. - Journal version under review in Management Science. 
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Our work focuses on group fairness, measured through equal 
performance across groups, i.e. a pipeline is fairer than another 

with regard to a group if its performance gap is the smallest.

?
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The fairness literature studies how to detect and mitigate 
biases present the data. Current focus has been on 

modelling choices’ consequences on algorithmic fairness.



Impact of imputation on algorithmic fairness

● How data contain group-specific missingness 
patterns ?

● How does imputation affects downstream 
algorithmic fairness ?

Data Model Measure
of Fairness 

Real - World 
Fairness



Limited access to quality care 
Resulting in more missing data for some 
patients, e.g. as a result of less follow-up 
visits.

Identified Clinical Missingness Patterns



(Mis)-informed collection 
Concentration of missing data for patients who 
do not present “standard” symptoms that 
trigger questions or laboratory tests.

Identified Clinical Missingness Patterns



Confirmation bias 
Information is only 
collected when a condition 
is expected.

Identified Clinical Missingness Patterns
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➔ Single mean imputation (Population Mean) - Missing data are 
replaced by the population mean.
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Imputations

➔ Single mean imputation (Population Mean) - Missing data are 
replaced by the population mean.

➔ Group mean imputation - Missing data are replaced by the 
group-specific mean.

➔ Multiple Imputation using Chained Equation (MICE) - Missing 
covariates are iteratively drawn from a regression model built 
over all other available covariates with median initialisation.

➔ Group MICE - Group membership is added to render the MAR 
assumption more plausible

➔ Group MICE Missing - Missingness indicators are concatenated 
to the input data to leverage informative missingness.
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Different imputation strategies may have 
equal reconstruction errors at the 
population level while having different 
group reconstruction gaps.

1Reconstruction error
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Reconstruction error

3

Different imputation strategies may have 
equal reconstruction errors at the 
population level while having different 
group reconstruction gaps.

1

Current recommendations for group-specific 
imputation can increase the reconstruction gap 
and yield a worse reconstruction error for the 
marginalised group
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Current recommendations for group-specific 
imputation can increase the performance gap 
and yield a worse performance for the 
marginalised group

No imputation strategy consistently 
outperforms the others across clinical 
presence scenarios.

2

Downstream performance

3

1

Different imputation strategies may have 
equal downstream performance at the 
population level while having different 
group performance gaps.
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More than theoretical?

MIMIC-III, a freely accessible critical care database by A Johnson & al.

Observation Period

Time

Admission

Will the patient survive ?
1, 7, 14 days ?

24 hours

67 
laboratory 

tests

37, 917 
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Orders

Alive 5.68

Dead 7.57

Black 5.24

Other 5.86

Female 5.54

Male 6.03

Public 5.67

Private 6.11

Real-world data presents 
group-specific observation 
processes.

More than theoretical?
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Different imputation strategies may have 
equal prediction performance at the 
population level while having opposite 
group performance gaps. 

No imputation strategy consistently 
outperforms the others across clinical 
presence scenarios.
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Current recommendations for group-specific 
imputation and use of missingness indicators 
can increase the performance gap and yield a 
worse performance for the marginalised 
groups.

No imputation strategy consistently 
outperforms the others across clinical 
presence scenarios.

2

More than theoretical?

3

Different imputation strategies may have 
equal prediction performance at the 
population level while having opposite 
group performance gaps. 

1



Recommendations

● Study the missingness process.

● State the missingness assumptions. 

● Consider differences in the missingness process between 
training and deployment. 

● Evaluate the impact of different imputation strategies.
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For more details
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