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The observation process is imprinted by the interaction
between patients and the healthcare system.
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Clinical Presence presents a risk for
the generalisability of machine
Q learning solutions.
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Jeanselme, V., Martin, G., Peek, N., Sperrin, M., Tom, B., & Barrett, J. (2022).
Deepjoint: Robust survival modelling under clinical presence shift.
NeurlPS 2022 Workshop on Learning from Time Series for Health.
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What happens under group-specific patterns ?

Jeanselme, V., De-Arteaga, M., Zhang, Z., Barrett, J., & Tom, B. (2022).
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness.
In Machine Learning for Health (pp. 12-34). PMLR. - Journal version under review in Management Science.




Algorithmic Fairness
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Our work focuses on group fairness, measured through equal
performance across groups, i.e. a pipeline is fairer than another
with regard to a group if its performance gap is the smallest.



Fairness Pipeline

Measure
of Fairness

o o o = = o —

The fairness literature studies how to detect and mitigate
biases present the data. Current focus has been on
modelling choices’ consequences on algorithmic fairness.
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Impact of imputation on algorithmic fairness
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How data contain group-specific missingness
patterns?

e How does imputation affects downstream
algorithmic Fairness ?



|dentified Clinical Missingness Patterns
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' Limited access to quality care

' Resulting in more missing data for some
' patients, e.g. as a result of less follow-up
 Visits.
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' (Mis)-informed collection !
' Concentration of missing data for patients who
i do not present “standard” symptoms that

' trigger questions or laboratory tests.
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. Confirmation bias
. Information is only
' collected when a condition !
' is expected. '



Formalisation

° Condition

° Observed covariate
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Formalisation

Condition

Unobserved covariate

Observed covariate

Observation process
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Formalisation

Condition

Group membership

Unobserved covariate

Observed covariate

Observation process
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Limited access to quality care

(Mis)-informed collection

Confirmation bias

32



Simulations

Outcome

Positive

= = = Negative

o - N,
X f :
v - F
~.7" L.
X1

Ground Truth

Group

mmmm Marginalised



Simulations

Outcome

Positive

= = = Negative

= ey
- £ 2
-

X1

Ground Truth

Group

Majority

mmmm Marginalised



Simulations

Outcome Group Missingness
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Ground Truth Limited access (Mis)-informed Confirmation
to quality care collection bias
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Reconstruction Error

Clinical Imputation
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Imputations

-  Single mean imputation (Population Mean) - Missing data are
replaced by the population mean.
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Imputations

-  Single mean imputation (Population Mean) - Missing data are
replaced by the population mean.

-  Group mean imputation - Missing data are replaced by the
group-specific mean.

38



Imputations

-  Single mean imputation (Population Mean) - Missing data are
replaced by the population mean.

-  Group mean imputation - Missing data are replaced by the
group-specific mean.

-  Multiple Imputation using Chained Equation (MICE) - Missing
covariates are iteratively drawn from a regression model built
over all other available covariates with median initialisation.

- Group MICE - Group membership is added to render the MAR
assumption more plausible
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Imputations

Single mean imputation (Population Mean) - Missing data are
replaced by the population mean.

Group mean imputation - Missing data are replaced by the
group-specific mean.

Multiple Imputation using Chained Equation (MICE) - Missing
covariates are iteratively drawn from a regression model built
over all other available covariates with median initialisation.

Group MICE - Group membership is added to render the MAR
assumption more plausible

Group MICE Missing - Missingness indicators are concatenated
to the input data to leverage informative missingness.
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Reconstruction error
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Different imputation strategies may have
equal reconstruction errors at the

G population level while having different
group reconstruction gaps.
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Reconstruction error
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No imputation strategy consistently
° outperforms the others across clinical
presence scenarios.
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Current recommendations for group-specific

° imputation can increase the reconstruction gap
and yield a worse reconstruction error for the
marginalised group
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Downstream performance
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Different imputation strategies may have

Downstream performance @ oo\ dovrstreamperformance at the
population level while having different
group performance gaps.
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Downstream performance
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No imputation strategy consistently
° outperforms the others across clinical
presence scenarios.



Downstream performance
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Current recommendations for group-specific

° imputation can increase the performance gap
and yield a worse performance for the

marginalised group
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Implications

Hypotheses Imputation quality Predictive performance

Equally performing approaches at the population level have similar

algorithmic fairness properties X X

Imputation properties are consistent across missingness processes

Controlling/stratifying on group results in improved group perfor-
mance

X X
X X
X X

Controlling/stratifying on group reduces group disparities



More than theoretical?

Admission
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------------------------------------------ 1,7,14 days ?



More than theoretical?

Orders
Alive 5.68 Real-world data presents
group-specific observation
Dead 7.57 processes.
Black 5.24
Other 5.86

Female 5.54
Male 6.03
Public 5.67

Private 6.11



More than theoretical?
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More than theoretical?
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Different imputation strategies may have
equal prediction performance at the

G population level while having opposite
group performance gaps.
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More than theoretical?
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presence scenarios.



More than theoretical?
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Current recommendations for group-specific
imputation and use of missingness indicators
can increase the performance gap and yield a
worse performance for the marginalised
groups.
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Recommendations

e Study the missingness process.

e State the missingness assumptions. For more details

e Consider differences in the missingness process between
training and deployment.

e Evaluate the impact of different imputation strategies.
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