

Neural Fine-Gray

Vincent Jeanselme, Chang Ho Yoon, Brian Tom and Jessica Barrett

CHIL - June 2023

What is survival analysis?

Time-to-event modelling

What is survival analysis?

Time-to-event modelling

What is survival analysis ?

Time-to-event modelling with censored patients

What is survival analysis ?

Time-to-event modelling with censored patients

What is survival analysis ?

Maximise the **likelihood** of **both** observed and censored outcomes

Model the **survival** function

$$S(t \,|\, x) \,=\, \mathbb{P}(T \geq t \,|\, x)$$

Existing strategies

- 1. Cox model
- 2. Fine-Gray
- 3. DeepHit
- 4. Deep Survival Machine
- 5. DeSurv

Survival Analysis

$$egin{aligned} S(t \,|\, x) &= \mathbb{P}(T \geq t \,|\, x) \ &= e^{-\Lambda(t \,|\, x)} \ &= e^{-\int_0^t \lambda(u \,|\, x) du} \end{aligned}$$

Cox Model

Baseline Hazard

 $\lambda(s \,|\, x) \,=\, \lambda_0(s) \,\expig(lpha^T xig)$

Hazard

Covariate Drift

Competing risks

With multiple risks, one is interested in estimating the **cumulative incidence function**:

$$egin{aligned} F_r(t|x) &= \mathbb{P}(T < t, ext{risk} = r|x) \ &= \int_0^t \lambda_r(u|x) e^{-\int_0^u \sum_r \lambda_r(s) ds} du \end{aligned}$$

Fine-Gray

Instead of considering each risk **separately** to then estimate the cumulative incidence function, Fine-Gray proposes to **account for** the different risks by modelling the subdistribution hazard:

$$h_r(t|x) = \lim_{\delta t o 0} rac{\mathbb{P}(t < T < t + \delta t, \ ext{risk} = r|(T \geq t) \ \cup \ (T < t \ \cap \ ext{risk}
eq r), \ x)}{\delta t}$$

DeepHit

Time **discretisation** with softmax over time and risks

Deep Survival Machine

Mixture of **parametric distributions** parameterized by neural networks

 \mathbf{X}

DeSurv

A neural network models the **derivative** of F, and another weigh the outcomes. The cumulative incidence is obtained by solving an **ODE**.

Importantly, one needs **both** the **derivative** of F and **F** to compute the **likelihood** of the observed data.

Proposed strategy

Monotonic Neural Network

Monotonic Network

Monotonic Network tM $d \in \mathbb{R}^+, \mathrm{M}(t+d) \geq \mathrm{M}(t)$

 $t^TW + b$

Monotonic Network $\forall d \in \mathbb{R}^+, \mathrm{M}(t+d\,) \, \geq \, \mathrm{M}(t)$ Μ $t^TW + b$ $W = w^2 > 0$

Positively weighted neural networks are **universal monotonic approximators**.

Cardiovascular risk

- 1. Experimental settings
- 2. Results
- 3. Importance of modelling competing risks

Experimental settings

Evaluation: 5-fold cross-validation

- Time-dependent C Index
- Time-dependent Brier Score

Results Time quantiles C-index **Brier Score** (Discrimination) (Calibration) Model **q**_{0.25} **q**_{0.5} **q**_{0.75} **q**_{0.25} **q**_{0.5} **q**_{0.75} **Neural Fine Gray** 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010) 0.128 (0.004) 0.781 (0.026) 0.053 (0.003) 0.102 (0.007) 0.141 (0.002) DeepHit 0.855 (0.026) 0.743 (0.014) 0.778 (0.014) DSM 0.866 (0.023) 0.806 (0.023) 0.057 (0.005) 0.104 (0.006) 0.141 (0.002) DeSurv 0.872 (0.027) 0.807 (0.031) 0.775 (0.022) 0.049 (0.005) 0.095 (0.009) 0.129 (0.003) 0.057 (0.006) Fine Grav 0.842 (0.025) 0.794 (0.024) 0.772 (0.015) 0.099 (0.007) 0.131 (0.003)

In addition to **state-of-the-art** performance, the proposed method offers a *n/2* computational gain in comparison to DeSurv *n* being the number of points used for the numerical integration (n = 15).

Importance

Why model competing risks?

Accounting for competing risks **improves** risk predictions.

Importance

Who benefits?

Age groups	Difference in Brier Score		
	q _{0.25}	q _{0.5}	q _{0.75}
< 40	-0.000 (0.000)	-0.001 (0.002)	0.000 (0.005)
40 - 50	-0.001 (0.001)	-0.002 (0.003)	-0.002 (0.001)
50 - 60	-0.003 (0.005)	-0.004 (0.003)	-0.006 (0.007)
60 +	-0.013 (0.011)	-0.022 (0.018)	-0.007 (0.024)

Patients the **most at risk** for the competing risk may benefit the most.

Impact on medical practice

10 next years ?

Competing risks *must* be accounted for in medical analyses

Contact *@JeanselmeV* vincent.jeanselme@mrc-bsu.cam.ac.uk