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What is survival analysis ?

Maximise the likelihood of both observed and censored outcomes

Model the survival function

S(t|z) = P(T >t|x)
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Existing
strategies

Cox model
Fine-Gray

DeepHit
Deep Survival Machine
DeSurv



Survival Analysis

S(t|z) = P(T > t|x)
At |2)

e I3 A(u | z)du




Cox Model

Baseline Hazard
A(s|z) = Ao(s) exp (' z)

Hazard Covariate Drift



Competing risks
With multiple risks, one is interested in estimating the cumulative incidence Function:
F.(tlz) = P(T < t,risk = r|x)
= /t A (ulz)e Jo Zed()ds gy
0



Fine-Gray

Instead of considering each risk separately to then estimate the cumulative incidence Function,
Fine-Gray proposes to account For the different risks by modelling the subdistribution hazard:

(]2 = }im Pt < T < t+ dt, risk = 7°|(T; t) U (T<tnNrisk#r), )
t—0

A proportional hazards model for the subdistribution of a competing risk by J. Fine and R. Gray, 1999.
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DeepHit

Time discretisation with softmax over time

and risks
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Deephit: A deep learning approach to survival analysis with competing risks by C. Lee, 2018
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Deep Survival Machine

Mixture of parametric distributions
parameterized by neural networks - ﬂ
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Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks by C. Nagpal, et al., 2020 17



DeSurv

A neural network models the derivative of F,
and another weigh the outcomes. The
cumulative incidence is obtained by solving an
ODE.

Importantly, one needs both the derivative of
F and F to compute the likelihood of the
observed data.
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Derivative-Based Neural Modelling of Cumulative Distribution Functions For Survival Analysis by D. Danks and C. Yau, 2022

Cumulative Incidence
Functions for all K events

-

[ FO(tx) = (1) tanh(uV)) ]

[ F@(¢t]x) = 7® tanh(u?) ]

[pm P m(um)]
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Neural Fine-Gray

P(T > t|risk =r,x)],

_________________________ @[F(I z)],

[P(risk = r|z)],

. Multi Layer Perceptron

. Monotonic Neural Network
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Monotonic Network

Monotonic networks by J. Sill, 1997

_____________

Vd € RT,M(t +d) > M(¢)
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Monotonic Network

Monotonic networks by J. Sill, 1997

t

------------- Vd € RY,M(t +d) > M(t)

tTW + b
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Monotonic Network

------------ - Vd € RT,M(t +d) > M(t)

tTW + b
W = w? >0

Positively weighted neural networks are universal monotonic approximators.

Monotonic networks by J. Sill, 1997 & Monotonic Multi-layer Perceptron Networks as Universal Approximators by Lang, 2005
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Experimental settings

Probability of

18 covariates .
measured at study entry ot;servmg CvD
: given baseline

w covariates

] | Cardiovascular disease diagnosis: 26.09% \{J

B Censored: 56.15%

m ’XD Death from other causes: 17.75%

4434 @' w Time

patients
Evaluation: 5-fold cross-validation
- Time-dependent C Index
- Time-dependent Brier Score
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Results

Model

Neural Fine Gray
DeepHit
DSM
DeSurv

Fine Gray

q025

0.872 (0.024)
0.855 (0.026)
0.866 (0.023)
0.872 (0.027)

0.842 (0.025)

C-index

(Discrimination)

o

0.812 (0.029)
0.781 (0.026)
0.806 (0.023)
0.807 (0.031)

0.794 (0.024)

qOJS

0.782 (0.018)
0.743 (0.014)
0.778 (0.014)
0.775 (0.022)

0.772 (0.015)

q0.25

0.050 (0.003)
0.053 (0.003)
0.057 (0.005)
0.049 (0.005)

0.057 (0.006)

In addition to state-of-the-art performance,

Brier Score
(Calibration)

o5
0.095 (0.010)
0.102 (0.007)
0.104 (0.006)
0.095 (0.009)

0.099 (0.007)

the proposed method offers a n/2 computational gain in comparison to DeSurv

nbeing the number of points used for the numerical integration (n = 15).

qOJS

0.128 (0.004)
0.141 (0.002)
0.141 (0.002)
0.129 (0.003)

0.131 (0.003)



Importance

Why model competing risks?

C-index Brier Score
Model

qO.ZS q0.5 cI0.75 q0.25 qO.S

Neural Fine Gray 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010)

Non - Competing 0.862 (0.029) 0.807 (0.032) 0.780 (0.020) 0.053 (0.004) 0.099 (0.011)

Accounting for competing risks improves risk predictions.

CI0.75

0.128 (0.004)

0.129 (0.005)



Importance

Who benefits?

Age groups

<40
40-50
50-60

60 +

Difference in Brier Score

q025

-0.000 (0.000)
-0.001 (0.001)
-0.003 (0.005)

-0.013 (0.011)

qOS

-0.001 (0.002)
-0.002 (0.003)
-0.004 (0.003)

-0.022 (0.018)

qOJS

0.000 (0.005)
-0.002 (0.001)
-0.006 (0.007)

-0.007 (0.024)

Patients the most at risk for the competing risk may benefit the most.



Impact on medical practice
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Conclusion
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Competing risks must be accounted For in medical analyses
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