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What is survival analysis ?

Maximise the likelihood of both observed and censored outcomes

Model the survival function
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Existing 
strategies

1. Cox model
2. Fine-Gray

3. DeepHit
4. Deep Survival Machine
5. DeSurv



Survival Analysis
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Cox Model

Regression Models and Life-Tables by D. Cox, 1972 13
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Competing risks

With multiple risks, one is interested in estimating the cumulative incidence function:
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Fine-Gray

A proportional hazards model for the subdistribution of a competing risk by J. Fine and R. Gray, 1999. 

Instead of considering each risk separately to then estimate the cumulative incidence function, 
Fine-Gray proposes to account for the different risks by modelling the subdistribution hazard:
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DeepHit

Deephit: A deep learning approach to survival analysis with competing risks by C. Lee, 2018 

Time discretisation with softmax over time 
and risks
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Deep Survival Machine

Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks by C. Nagpal, et al., 2020 

Mixture of parametric distributions 
parameterized by neural networks

17



DeSurv

Derivative-Based Neural Modelling of Cumulative Distribution Functions for Survival Analysis by D. Danks and C. Yau, 2022 

A neural network models the derivative of F, 
and another weigh the outcomes. The 
cumulative incidence is obtained by solving an 
ODE.

Importantly, one needs both the derivative of 
F and F to compute the likelihood of the 
observed data.
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Neural Fine-Gray
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Monotonic Network

Monotonic networks by J. Sill, 1997

M

21



Monotonic Network

Monotonic networks by J. Sill, 1997

M
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Monotonic Network

Monotonic networks by J. Sill, 1997 & Monotonic Multi-layer Perceptron Networks as Universal Approximators by Lang, 2005

M
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Positively weighted neural networks are universal monotonic approximators.
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Experimental settings

Censored: 56.15%

Cardiovascular disease diagnosis: 26.09% 

Death from other causes : 17.75% 

4,434 
patients

18 covariates 
measured at study entry

Probability of 
observing CVD 
given baseline 

covariates

Time

Evaluation: 5-fold cross-validation
- Time-dependent C Index
- Time-dependent Brier Score
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Results

Model

C-index 
(Discrimination)

Brier Score 
(Calibration)

q0.25 q0.5 q0.75 q0.25 q0.5 q0.75

Neural Fine Gray 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010) 0.128 (0.004)

DeepHit 0.855 (0.026) 0.781 (0.026) 0.743 (0.014) 0.053 (0.003) 0.102 (0.007) 0.141 (0.002)

DSM 0.866 (0.023) 0.806 (0.023) 0.778 (0.014) 0.057 (0.005) 0.104 (0.006) 0.141 (0.002)

DeSurv 0.872 (0.027) 0.807 (0.031) 0.775 (0.022) 0.049 (0.005) 0.095 (0.009) 0.129 (0.003)

Fine Gray 0.842 (0.025) 0.794 (0.024) 0.772 (0.015) 0.057 (0.006) 0.099 (0.007) 0.131 (0.003)
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In addition to state-of-the-art performance, 
the proposed method offers a n / 2  computational gain in comparison to DeSurv

n being the number of points used for the numerical integration (n = 15). 

Time quantiles



Importance

Model
C-index Brier Score

q0.25 q0.5 q0.75 q0.25 q0.5 q0.75

Neural Fine Gray 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010) 0.128 (0.004)

Non - Competing 0.862 (0.029) 0.807 (0.032) 0.780 (0.020) 0.053 (0.004) 0.099 (0.011) 0.129 (0.005)

Accounting for competing risks improves risk predictions.

Why model competing risks?
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Importance

Who benefits?

Age groups
Difference in Brier Score

q0.25 q0.5 q0.75

< 40 -0.000 (0.000) -0.001 (0.002) 0.000 (0.005)

40 - 50 -0.001 (0.001) -0.002 (0.003) -0.002 (0.001)

50 - 60 -0.003 (0.005) -0.004 (0.003) -0.006 (0.007)

60 + -0.013 (0.011) -0.022 (0.018) -0.007 (0.024)

Patients the most at risk for the competing risk may benefit the most.
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Impact on medical practice
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