

The University of Manchester

Using observation processes to predict survival: A deep learning approach to joint modelling

Vincent Jeanselme, Glen Martin, Matthew Sperrin, Niels Peek, Brian Tom and Jessica Barrett

> International Biometric Conference 10th - 15th July 2022

Clinical Presence

Clinical Presence

Clinical Presence

The **sampling process** is imprinted by the interaction between **patients** and the **healthcare system**.

Motivating Example

Motivating Example

Evidence of Clinical Presence

Proposed Approach

- 1. CoxPH
- 2. DeepSurv
- 3. Recurrent Neural Network
- 4. DeepJoint

Notation

Notation

Notation

Cox Model

Baseline Hazard

$$\lambda(s \,|\, lab_{LOCF}) \,=\, \lambda_0(s) \,\expig(lpha^T lab_{LOCF}ig)$$

Hazard

Covariates Drift

DeepSurv

$$egin{aligned} \lambda(s \,|\, lab_{LOCF}) &= \lambda_0(s)\,\expig(lpha^T lab_{LOCF}ig) \ & ig| \ & ight\} \ \lambda(s \,|\, lab_{LOCF}) &= \lambda_0(s)\,\expig(h(lab_{LOCF})ig) \end{aligned}$$

Neural Network Interaction

DeepSurv

DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network by J Katzman & al, 2018

Recurrent Neural Network

A Recurrent Neural Network (RNN) is a neural network that extracts a hidden representation of the data by taking advantage of its **sequential nature**

$$h_j=f(h_{j-1},\,lab_j)$$

Embedding

Recurrent Neural Network

We leverage this embedding for modelling the survival outcome with DeepSurv

$$egin{aligned} h_j &= f(h_{j-1},\,lab_j)\ \lambda(s\,|\,{
ightarrow}\,lab_j) \,=\,\lambda_0(s)\,\exp{(h_j)} \end{aligned}$$

Recurrent Neural Network

Proposed Approach

We propose to model the **interevent time** as a **temporal point process**

Proposed Approach

$$\Lambda_I(arepsilon_j\,|\,h_{j-1})\,=\,I(arepsilon_j,\,h_{j-1})$$

Cumulative Hazard

 t_{j-1} t_j ? Time

I models the **cumulative hazard** of observing an event

It is learnt by maximizing the likelihood by back propagation

Proposed Approach

Application

MIMIC III Dataset

- 1. Predictive performance
- 2. Robustness performance

MIMIC Dataset - Preprocessed

Change in Observation Process

Inspired by the **weekend effect**, we split the patients between weekdays and weekend admission to evaluate if a **shift in the observation process** would impact the survival predictive performances.

Robustness Evaluation

Robustness to Weekend Effect

Conclusions

- **Clinical presence** leads to **informative** observation process
- Leveraging this information improves predictive performance
- DeepJoint results in an embedding more robust to change in observation process

Contact vincent.jeanselme@mrc-bsu.cam.ac.uk @JeanselmeV

Brier Performance

Weekend Performance

