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Clinical Presence

Admission

The sampling process is imprinted by the interaction
between patients and the healthcare system.
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Evidence of Clinical Presence
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1. CoxPH
PFO pOSEd 2. DeepSurv

3. Recurrent Neural Network
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Cox Model

Baseline Hazard

A(s | labroor) = Xo(s) exp (aTlabrocr)

Hazard Covariates Drift



DeepSurv

)\(S ‘ labLOCF) = )\0(8) exXp (OéTl OCF)

)\(S | labLOCF) = /\0(8) exXp (h(labLOCF))

Neural Network Interaction

DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network by J Katzman & al, 2018



DeepSurv

)\(8 ‘ labLOC’F) = )\0(8) €Xp (OéTl OCF)

|

)\(8 ‘ labLOCF) = )\0(8) exXp (h(labLOCF))

Ips = Z h(labrocp) — log Z eXPh(labJLocF)



Recurrent Neural Network

A Recurrent Neural Network (RNN) is a neural network
that extracts a hidden representation of the data by
taking advantage of its sequential nature

hj = f(hj-1, lab;)

Embedding




Recurrent Neural Network

We leverage this embedding for modelling the survival
outcome with DeepSurv

hj — f(hj_l, labj)
A(s|— lab;) = Xo(s) exp (h;)




Recurrent Neural Network
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Proposed Approach

Survival
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We propose to model the interevent time as a
temporal point process



Proposed Approach

Ar(ejlhj—1) = I(gj, hj1)

Cumulative Hazard

-0 @ O Time
tj,1 tj ?

I models the cumulative hazard of observing
an event

It is learnt by maximizing the likelihood by back
propagation

Fully Neural Network based Model for General Temporal Point Processes by T Omi & al., 2019



Proposed Approach

Ar(ejlhj—1) = I(gj, hj1)

Cumulative Hazard
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Fully Neural Network based Model for General Temporal Point Processes by T Omi & al., 2019
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DeepJoint
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DeepJoint
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P(lab;is observed) = M(ej, hj_1)
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DeepJoint
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Ap p li Cq ti on 1. Predictive performance

2. Robustness performance

MIMIC Ill Dataset



MIMIC Dataset - Preprocessed
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C-Index Performance
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C-Index Performance
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C-Index Performance
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C-Index Performance
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C-Index Performance
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Change in Observation Process

70
Inspired by the weekend effect, we split the
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Robustness Evaluation
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Weekend -> Weekday

Robustness to Weekend Effect
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Conclusions

Clinical presence leads to informative
observation process

Leveraging this information improves
predictive performance

DeepJoint results in an embedding
more robust to change in observation
process

Contact
vincent.jeanselme@mrc-bsu.cam.ac.uk
@JeanselmeV






Brier Performance
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Weekend Performance
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