

Vincent Jeanselme, Brian Tom and Jessica Barrett

Conference on Health, Inference, and Learning 7th - 8th April 2022

Motivation

- 1. Phenotyping
- 2. Leveraging Neural Network
- 3. Interpretability

Literature

- 1. Survival Analysis
- 2. Cox PH
- 3. Deep Surv
- 4. Deep Cox Mixture

Survival Analysis

Time-to-event modelling with **censored** patients

Population

- x Input
- t Time of event
- d Observed outcome

Survival Analysis

Time-to-event modelling with **censored** patients

Population

- x Input
- t Time of event
- d Observed outcome

Aim to model the survival

Cox Model - Proportional Hazard

Baseline Hazard

$$\lambda(s \,|\, x) \,=\, \lambda_0(s) \,\expig(eta^T xig)$$

Hazard

Covariates Drift

Regression Models and Life-Tables by D Cox, 1972

DeepSurv

$$egin{aligned} \lambda(s \,|\, x) \,&=\, \lambda_0(s)\,\exp\left(eta^T x
ight) \ & & & & \ & & \ & & \ & & \ & & \ & & \ &$$

Neural Network Interaction

DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network by J Katzman & al, 2018

Deep Cox Mixtures for Survival Regression by C Nagpal & al, 2021

Proposed Model

Multi Layer Perceptron
Monotone Positive Neural Network
Cluster Latent Representation

Survival Regression with Proper Scoring Rules and Monotonic Neural Networks by D Rindt, R Hu & al, 2021

Multi Layer Perceptron

Monotone Positive Neural Network

Cluster Latent Representation

Experimental Results

- 1. Setting
- 2. Predictive Performance
- 3. Clustering

Setting

Dataset	Number of observations	Number of Features	Number of Events	Number of Right Censored
SUPPORT	9,105	30	6,201 (68.1 %)	2,904 (31.9%)
METABRIC	1,904	9	1,103 (57.9 %)	801 (42.1%)
SYNTHETIC	25,000	3	16,385 (65.5 %)	8,615 (34.5 %)

Setting

Dataset	Number of observations	Number of Features	Number of Events	Number of Right Censored
SUPPORT	9,105	30	6,201 (68.1 %)	2,904 (31.9%)
METABRIC	1,904	9	1,103 (57.9 %)	801 (42.1%)
SYNTHETIC	25,000	3	16,385 (65.5 %)	8,615 (34.5 %)

Metrics

- Time Dependent C Index
- TIme Dependent Brier Score

Experiment: 5 fold cross-validation with inner split for hyperparameter tuning

Clustering

Conclusions

- More **interpretable** survival distributions as **not depend** on input covariates
- **No parametric assumptions** on the survival distributions
- End-to-end **optimization** of population clustering
- Competing **predictive performance** with **state-of-the-art** methodologies

Github

Contact vincent.jeanselme@mrc-bsu.cam.ac.uk @JeanselmeV